bias_variance
- bias_variance_0_1_loss(predictions, y_test)[source]
Compute the bias-variance decomposition using the 0-1 loss function
- Parameters:
predictions – numpy array of predictions over the set of iterations
y_test – numpy array of ground truth labels
- Returns:
(average loss, average bias, average variance, net variance)
- bias_variance_compute(estimator, X_train, y_train, X_test, y_test, prepare_X=<function <lambda>>, prepare_y_train=<function <lambda>>, iterations=200, random_state=None, decomp_fn=<function bias_variance_mse>, fit_kwargs=None, predict_kwargs=None)[source]
Compute the bias-variance decomposition in serial
- Parameters:
estimator (EstimatorWrapper) – estimator wrapped with a class extending EstimatorWrapper
X_train – features for training
y_train – ground truth labels for training
X_test – features for testing
y_test – ground truth labels for testing
prepare_X (function, optional) – function to transform feature datasets before calling fit and predict methods
prepare_y_train (function, optional) – function to transform training ground truth labels before calling fit method
iterations (int, optional) – number of iterations for the training/testing
random_state (int, optional) – random state for bootstrap sampling
decomp_fn (function, optional) – bias-variance decomposition function
fit_kwargs (dict, optional) – kwargs to pass to the fit method
predict_kwargs (dict, optional) – kwargs to pass to the predict method
- Returns:
(average loss, average bias, average variance, net variance)
- bias_variance_mse(predictions, y_test)[source]
Compute the bias-variance decomposition the mean squared error loss function
- Parameters:
predictions – numpy array of predictions over the set of iterations
y_test – numpy array of ground truth labels
- Returns:
(average loss, average bias, average variance, net variance)
- bootstrap_train_and_predict(estimator, X_train_values, y_train_values, X_test_prepared, prepare_X=<function <lambda>>, prepare_y_train=<function <lambda>>, random_state=None, fit_kwargs=None, predict_kwargs=None)[source]
Train an estimator using a bootstrap sample of the training data and get predictions from it
- Parameters:
estimator (EstimatorWrapper) – estimator wrapped with a class extending EstimatorWrapper
X_train_values – numpy array of features for training
y_train_values – numpy array of ground truth labels for training
X_test_prepared – feature set for testing which has been processed by prepare_X function
prepare_X (function, optional) – function to transform feature datasets before calling fit and predict methods
prepare_y_train (function, optional) – function to transform train ground truth labels before calling fit method
random_state (int, optional) – random state for bootstrap sampling
fit_kwargs (dict, optional) – kwargs to pass to the fit method
predict_kwargs (dict, optional) – kwargs to pass to the predict method
- Returns:
predictions
- get_values(x)[source]
If argument is a Pandas dataframe, return ‘values’ numpy array from it.
- Parameters:
x (Any) – pandas dataframe or anything else
- Returns:
if pandas dataframe - return ‘values’ numpy array otherwise - return itself
- train_and_predict(estimator, X_train_values, y_train_values, X_test_prepared, prepare_X=<function <lambda>>, prepare_y_train=<function <lambda>>, fit_kwargs=None, predict_kwargs=None)[source]
Train an estimator and get predictions from it
- Parameters:
estimator (EstimatorWrapper) – estimator wrapped with a class extending EstimatorWrapper
X_train_values – numpy array of features for training
y_train_values – numpy array of ground truth labels for training
X_test_prepared – feature set for testing which has been processed by prepare_X function
prepare_X (function, optional) – function to transform feature datasets before calling fit and predict methods
prepare_y_train (function, optional) – function to transform train ground truth labels before calling fit method
fit_kwargs (dict, optional) – kwargs to pass to the fit method
predict_kwargs (dict, optional) – kwargs to pass to the predict method
- Returns:
predictions