bias_variance_parallel
- bias_variance_compute_parallel(estimator, X_train, y_train, X_test, y_test, prepare_X=<function <lambda>>, prepare_y_train=<function <lambda>>, iterations=200, random_state=None, decomp_fn=<function bias_variance_mse>, fit_kwargs=None, predict_kwargs=None)[source]
Compute the bias-variance decomposition in parallel
- Parameters:
estimator (EstimatorWrapper) – estimator wrapped with a class extending EstimatorWrapper
X_train – features for training
y_train – ground truth labels for training
X_test – features for testing
y_test – ground truth labels for testing
prepare_X (function, optional) – function to transform feature datasets before calling fit and predict methods
prepare_y_train (function, optional) – function to transform training ground truth labels before calling fit method
iterations (int, optional) – number of iterations for the training/testing
random_state (int, optional) – random state for bootstrap sampling
decomp_fn (function, optional) – bias-variance decomposition function
fit_kwargs (dict, optional) – kwargs to pass to the fit method
predict_kwargs (dict, optional) – kwargs to pass to the predict method
- Returns:
(average loss, average bias, average variance, net variance)